DATA VALIDATION REPORT

PROJECT: Stormwater, Sandblast AOPC, Bradford Island, Cascade Locks, OR LABORATORY: Katahdin Analytical and Eurofins TestAmerica Seattle

MATRIX: Stormwater

SAMPLING DATE(S): October 16, 2019 SAMPLING EVENT(s): Stormwater Sampling

REPORT DATE: May 1, 2020

Validator: Alison Suess

1. Introduction

The following is a data validation report for stormwater samples collected on October 16, 2019 from the storm drain system in the Sandblast Area of Potential Concern (AOPC) on Bradford Island, in Cascade Locks, OR. The sample data groups (SDG), analytes measured, methods used, and the laboratory information is provided below:

Sample Data Group (SDG)	No. of Samples	Matrix	Analyte(s)	Method	Validation Level	
		2 Stormwater	Metals	200.8		
			Mercury	7470		
			SVOCs	8270D SIM		
Katahdin TM0997	2		Pesticides	8081B	Stage 2b (S2BVM)	
110997			Dissolved Organic Carbon	EPA 415.1	(326 V IVI)	
			Total Suspended Solids	SM 2540D		
			Total Hardness	200.8 (calculated)		
	000000000000000000000000000000000000000	***************************************	PCB Congeners	1668A		
Eurofins	2 S	Stormwater	PAHs	8270D SIM	-	
TestAmerica ¹ 580-90149-1			Total Organotins	PSEP/Krone Method	Stage 2b (S2BVM)	
			Gas Range Organics	NWTPH-Gx	(32BVM)	
			Diesel Range Organics	NWTPH-Dx	-	

¹Eurofins TestAmerica Seattle is a subcontractor for Katahdin.

The field sample identification numbers, sampling dates, locations, and corresponding laboratory identification numbers are listed in Table 1 (end of report).

Sample analyses were evaluated to level Stage 2B data validation. Stage 2B validation of the laboratory analytical data package consists of verification and validation based on completeness and compliance checks of sample receipt conditions and both sample-related and instrument-related QC results.

Analytical results are qualified based on the definitions and use of qualifying flags in the following resources:

- Department of Defense (DoD) Quality Systems Manual for Environmental Laboratories, Version 5.3 (DoD, 2019)
- DoD General Data Validation Guidelines (DoD, 2018a, 2018b)
- United States Environmental Protection Agency (USEPA) Guidance for Labeling Externally Validated Data for Superfund Use (USEPA, 2009)
- USEPA National Functional Guidelines (NFGs) for Superfund Data Review (USEPA, 2016, 2017a, 2017b)

Definitions for limits and flags are given in Table 2. All detected concentrations less than the Limit of Quantitation (LOQ) are reported at their detected value but flagged J for estimated. Non-detects are reported at the Limit of Detection (LOD) and flagged U for undetected.

The validated data is presented in Table 3. Some data may be qualified using the reviewer's professional judgment. The conclusions presented herein are based on the information available for the review.

2. Metals Data Review, ICP-MS, Method 6020A

2.1 Stage 1 Review

Reviewed Item	Determination	Requirements/Comments
		All samples received under proper chain of custody.
		• Sampled: 16 October 2019 between 1258 and 1313;
Sample Custody	SATISFACTORY	held on ice overnight
		Relinquished at FedEx: 17 October 2019 at 0849
		Arrived at Katahdin: 18 October 2019 at 0935
	SATISFACTORY	Temperature 4 ± 2 °C
Temperature		• Temperature at arrival: 4.3, 1.1, 3.2 °C (3 coolers)
1 competature		Note: Temperature of cooler is below 2 °C, but samples
		were not frozen, which is acceptable.
	SATISFACTORY	Holding time for aqueous samples is 6 months. Samples
		for dissolved metals were filtered at the laboratory. Per
		EPA, hold time for metals to be filtered, and then acid
Holding Time		preserved, or analyzed without acid preservation is 14
		days (EPA 2016).
		Sampled: 16 October 2019
		Analyzed: 28 & 30 October 2019 (12 & 14 days)
Dilution	INFORMATION ONLY	No samples were diluted.

2.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments
Method Blank (MB)	SATISFACTORY	 Perform one per preparatory batch. The absolute values of all analytes must be < ½ LOQ or < 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater.
Laboratory Control Sample (LCS), LCS Duplicate (LCSD), and Relative Percent Difference (RPD)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits RPD of all analytes ≤ 20% (between LCS and LCSD). LCSD/RPD not necessary by Table B-9.
Matrix Spike (MS), Matrix Spike Duplicate (MSD), and Relative Percent Difference (RPD)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits RPD of all analytes ≤ 20% (between MS and MSD). Dilution test and post digestion spike are required if MS or MSD fails.

Reviewed Item	Determination	Requirements/Comments
Compound Identification and Quantitation	SATISFACTORY	 Compounds are identified and quantified automatically by the instrument. Manual integration of one or more chromatographic peaks may be required to correct integration performed by the instrument. All cases where manual review and integration of the chromatograms was required were initialed and dated by the reviewer in the data package. Was manual integration performed? (Y/N): N
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N
Filter Blank	See Qualification Summary Table	 One filter blank is performed to perform quality control on the filtration that is performed for dissolved metals analysis. No requirements or guidelines per DoD/DOE QSM Professional judgment is used to qualify data based on detections in the filter blank.

Reviewed Item	Determination	Requirements/Comments
Linear Dynamic Range (LDR) or High-Level Check Standard	SATISFACTORY	 Perform at initial set-up and checked every 6 months with a high standard at the upper limit of the range. Within ± 10% of true value.
Tuning	SATISFACTORY	 Perform prior to ICAL. Mass calibration ≤ 0.1 amu from true value Resolution < 0.9 amu full width at 10% peak height.
Initial Calibration (ICAL) for All Analytes	SATISFACTORY	 Daily ICAL prior to sample analysis. If more than one calibration standard is used, r² ≥ 0.99.
Initial Calibration Verification (ICV)	SATISFACTORY	 Perform once after each ICAL, analysis of a second source standard prior to sample analysis. All reported analytes within ± 10% of true value.
Continuing Calibration Verification (CCV)	SATISFACTORY	 Perform after every 10 field samples and at the end of the analysis sequence. All reported analytes within ± 10% of the true value.
Low-Level Calibration Check Standard (LLCCV)	SATISFACTORY	 Perform daily. All reported analytes within ± 20% of the true value.
Internal Standards (IS)	SATISFACTORY	 Perform every field sample, standard and QC sample. IS intensity in the samples within 30-120% of intensity of the IS in the ICAL blank.
Initial and Continuing Calibration Blank (ICB/CCB)	ICB: SATISFACTORY CCB: SATISFACTORY	 Perform immediately after the ICV and immediately after every CCV. The absolute values of all analytes must be < ½ LOQ or < 1/10th the amount measured in any sample.
Interference Check Solution (ICS)	SATISFACTORY	 Perform after ICAL and prior to sample analysis. ICS-A: Absolute value of concentration for all non-spiked project analytes <1/2 LOQ (unless they are a

verified trace impurity from one of the spiked
analytes);
• ICS-AB: Within ± 20% of true value.

SDG	Sample Affected	Analyte	Flag	Notes
SM5732	OF1, OF2	Zinc, dissolved	UJ (all detects); not flagged (non- detects)	Zinc was detected in the filter blank at 15.8 ug/L, with an LOQ of 2.0 ug/L. Dissolved zinc results are 17.1 ug/L (OF1) and 29.3 ug/L (OF2). Since concentrations in the filter blank are > 1/10 the concentration detected in the parent sample, concentrations of dissolved zinc were flagged as non-detect at their detected concentration. Total zinc sample results are not flagged.

3. Mercury Data Review, AA, Method 7470A

3.1 Stage 1 Review

Reviewed Item	Determination	Requirements/Comments
Sample Custody	SATISFACTORY	 All samples received under proper chain of custody. Sampled: 16 October 2019 between 1258 and 1313; held on ice overnight Relinquished at FedEx: 17 October 2019 at 0849 Arrived at Katahdin: 18 October 2019 at 0935
Temperature	SATISFACTORY	Temperature 4 ± 2 °C • Temperature at arrival: 4.3, 1.1, 3.2 °C (3 coolers) Note: Temperature of cooler is below 2 °C, but samples were not frozen, which is acceptable.
Holding Time	SATISFACTORY	Holding time for aqueous samples is 6 months. Samples for dissolved metals were filtered at the laboratory. Per EPA, hold time for metals to be filtered, and then acid preserved, or analyzed without acid preservation is 14 days (EPA 2016). • Sampled: 16 October 2019 • Analyzed: 28 & 30 October 2019 (12 & 14 days)
Dilution	INFORMATION ONLY	No samples were diluted.

3.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments
Method Blank (MB)	SATISFACTORY	 Perform one per preparatory batch. The absolute values of all analytes must be < ½ LOQ or < 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater.

Reviewed Item	Determination	Requirements/Comments
Laboratory Control Sample (LCS), LCS Duplicate (LCSD), and Relative Percent Difference (RPD)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits RPD of all analytes ≤ 20% (between LCS and LCSD). LCSD/RPD not necessary by Table B-9.
Matrix Spike (MS), Matrix Spike Duplicate (MSD), and Relative Percent Difference (RPD)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits RPD of all analytes ≤ 20% (between MS and MSD). Dilution test and post digestion spike are required if MS or MSD fails.
Compound Identification and Quantitation	SATISFACTORY	 Compounds are identified and quantified automatically by the instrument. Manual integration of one or more chromatographic peaks may be required to correct integration performed by the instrument. All cases where manual review and integration of the chromatograms was required were initialed and dated by the reviewer in the data package. Was manual integration performed? (Y/N): N
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N
Filter Blank	SATISFACTORY	 One filter blank is performed to perform quality control on the filtration that is performed for dissolved metals analysis. No requirements or guidelines per DoD/DOE QSM Professional judgment is used to qualify data based on detections in the filter blank. Detection of 0.020 J μg/L is < ½ LOQ of 0.20 μg/L.

Reviewed Item	Determination	Requirements/Comments
Initial Calibration (ICAL) for All Analytes	SATISFACTORY	 Daily ICAL prior to sample analysis. If more than one calibration standard is used, r² ≥ 0.99.
Initial Calibration Verification (ICV)	SATISFACTORY	 Perform once after each ICAL, analysis of a second source standard prior to sample analysis. All reported analytes within ± 10% of true value.
Continuing Calibration Verification (CCV)	SATISFACTORY	 Perform after every 10 field samples and at the end of the analysis sequence. All reported analytes within ± 10% of the true value.
Low-Level Calibration Check Standard (LLCCV)	SATISFACTORY	 Perform daily. All reported analytes within ± 20% of the true value.

	ICB:	Perform immediately after the ICV and immediately
Initial and Continuing	SATISFACTORY	after every CCV.
Calibration Blank (ICB/CCB)	CCB:	• The absolute values of all analytes must be < ½ LOQ
	SATISFACTORY	or $< 1/10$ th the amount measured in any sample.

No data was qualified based on validation.

4. SVOCs Data Review, GC/MS, Method 8270D Selected Ion Mode (SIM)

4.1 Stage 1 Review

Reviewed Item	Determination	Requirements/Comments
		All samples received under proper chain of custody.
		• Sampled: 16 October 2019 between 1258 and 1313;
Sample Custody	SATISFACTORY	held on ice overnight
		Relinquished at FedEx: 17 October 2019 at 0849
		Arrived at Katahdin: 18 October 2019 at 0935
		Temperature 4 ± 2 °C
Temperature	SATISFACTORY	Temperature at arrival: 4.3, 1.1, 3.2 °C (3 coolers)
remperature		Note: Temperature of cooler is below 2 °C, but samples
		were not frozen, which is acceptable.
		Holding time for aqueous samples is 14 days, and and
		analysis holding time for extracts is 40 days.
Holding Time	SATISFACTORY	Sampled: 16 October 2019
		• Extracted 21 October 2019 (5 days)
		Analyzed: 26 November 2019 (36 days)
Dilution	INFORMATION ONLY	No samples were diluted.

4.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments
Method Blank (MB)	SATISFACTORY	 Perform one per preparatory batch. No analytes detected > ½ LOQ or > 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater. Common contaminants must not be detected > LOQ.
Laboratory Control Sample (LCS)	 See Qualification Summary Table Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-hous limits as specified in the project plan. Specified: Lab in-house limits 	
Matrix Spike (MS), Matrix Spike Duplicate (MSD), and Relative Percent Difference (RPD)	See Qualification Summary Table	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits RPD of all analytes ≤ 20% (between MS and MSD).
Surrogate Spike	SATISFACTORY	 Perform for all field and QC samples. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan.

Reviewed Item	Determination	Requirements/Comments
Compound Identification and Quantitation	SATISFACTORY	 Compounds are identified and quantified automatically by the instrument. Manual integration of one or more chromatographic peaks may be required to correct integration performed by the instrument. All cases where manual review and integration of the chromatograms was required were initialed and dated by the reviewer in the data package. Was manual integration performed? (Y/N): Y
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N

Reviewed Item	Determination	Requirements/Comments	
Tune Check	SATISFACTORY	 Perform prior to ICAL and prior to each 12-hour period of sample analysis. Mass Specific ion abundance criteria of BFB or DFTPP from method. 	
Performance Check (Method 8270 only)	SATISFACTORY	 Perform at the beginning of each 12-hour period, prior to analysis of samples. Degradation ≤ 20% for DDT. Benzidine and pentachlorophenol shall be present at their normal responses and shall not exceed a tailing factor of 2. 	
Initial Calibration (ICAL) for All Analytes Including Surrogates	SATISFACTORY	 Perform at instrument set-up and after ICV or CCV failure, prior to sample analysis. Each analyte must meet one of the three options below: Option 1: RSD for each analyte ≤ 15%; Option 2: linear least squares regression for each analyte: r2 ≥ 0.99; Option 3: non-linear least squares regression (quadratic) for each analyte: r2 ≥ 0.99. 	
Retention Time window position establishment	SATISFACTORY	 Perform once per ICAL and at the beginning of the analytical sequence. Position shall be set using the midpoint standard of the ICAL curve when ICAL is performed. On days when ICAL is not performed, the initial CCV is used. 	
Evaluation of Relative Retention Times (RRT)	SATISFACTORY	 Perform with each sample. RRT of each reported analyte within ± 0.06 RRT units. 	
Initial Calibration Verification (ICV)	SATISFACTORY	 Perform once after each ICAL, analysis of a second source standard prior to sample analysis. All reported analytes within ± 20% of true value. 	

Reviewed Item	Determination	Requirements/Comments
Continuing Calibration Verification (CCV)	See Qualification Summary Table	 Perform daily before sample analysis; after every 12 hours of analysis time; and at the end of the analytical batch run. All reported analytes and surrogates within ± 20% of the true value. All reported analytes and surrogates within ± 50% for end of analytical batch CCV.
Internal Standards (IS)	SATISFACTORY	 Perform every field sample, standard and QC sample. Retention time within ± 10 seconds from retention time of the midpoint standard in the ICAL; EICP area within – 50% to +100% of ICAL midpoint standard. On days when ICAL is not performed, the daily initial CCV can be used.

SDG	Sample Affected	Analyte	Flag	Notes
TM0997	OF1, OF2	Bis(2- ethylhexyl)Phthalate	J- (all detects); UJ (all non- detects)	LCS %R is out of control low.
TM0997	OF2	Bis(2- ethylhexyl)Phthalate	J- (all detects); UJ (all non- detects)	The MS and MSD low recovery and RPD was out of control limits.
TM0997	OF2	All analytes	None	Two closing CVs (N6189 and N6259) were acceptable but were analyzed 24 minutes outside of the 12 hour window. If the closing CV fails, the DoD QSM allows for analysis of two additional CVs outside of the 12-hour window. Two additional CVs each were analyzed (N6109 and N6191; N6260 and N6261; respectively) were analyzed and all were reported.

5. PAHs Data Review, GC/MS, Method 8270D Selected Ion Mode (SIM)

5.1 Stage 1 Review

Reviewed Item	Determination	Requirements/Comments
		All samples received under proper chain of custody.
		• Sampled: 16 October 2019 between 1258 and 1313;
Sample Custody	SATISFACTORY	held on ice overnight
		Relinquished at FedEx: 17 October 2019 at 0849
		Arrived at Katahdin: 18 October 2019 at 0935
		Temperature 4 ± 2 °C
Temperature	SATISFACTORY	Temperature at arrival: 4.3, 1.1, 3.2 °C (3 coolers)
remperature	SATISFACTORT	Note: Temperature of cooler is below 2 °C, but samples
		were not frozen, which is acceptable.
		Extraction holding time for aqueous samples is 14 days,
Holding Time		and analysis holding time for extracts is 40 days.
	SATISFACTORY	Sampled: 16 October 2019
		• Extracted: 23 October 2019 (7 days)
		Analyzed: 25 October 2019 (2 days)

Dilution	INFORMATION ONLY	No samples were diluted.
----------	---------------------	--------------------------

5.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments	
Method Blank (MB)	SATISFACTORY	 Perform one per preparatory batch. No analytes detected > ½ LOQ or > 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater. Common contaminants must not be detected > LOG 	
Laboratory Control Sample (LCS)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits 	
Matrix Spike (MS), Matrix Spike Duplicate (MSD), and Relative Percent Difference (RPD)	See Qualification Summary Table	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits RPD of all analytes ≤ 20% (between MS and MSD). 	
Surrogate Spike	See Qualification Summary Table	 Perform for all field and QC samples. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. 	
Compound Identification and Quantitation	SATISFACTORY	 Compounds are identified and quantified automatically by the instrument. Manual integration of one or more chromatographic peaks may be required to correct integration performed by the instrument. All cases where manual review and integration of the chromatograms was required were initialed and dated by the reviewer in the data package. Was manual integration performed? (Y/N): Y 	
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N 	

Reviewed Item	Determination	Requirements/Comments
Tune Check	SATISFACTORY	 Perform prior to ICAL and prior to each 12-hour period of sample analysis. Mass Specific ion abundance criteria of BFB or DFTPP from method.
Performance Check (Method 8270 only)	SATISFACTORY	 Perform at the beginning of each 12-hour period, prior to analysis of samples. Degradation ≤ 20% for DDT. Benzidine and pentachlorophenol shall be present at their normal responses and shall not exceed a tailing factor of 2.

Reviewed Item	Determination	Requirements/Comments
Initial Calibration (ICAL) for All Analytes Including Surrogates	SATISFACTORY	 Perform at instrument set-up and after ICV or CCV failure, prior to sample analysis. Each analyte must meet one of the three options below: Option 1: RSD for each analyte ≤ 15%; Option 2: linear least squares regression for each analyte: r2 ≥ 0.99; Option 3: non-linear least squares regression (quadratic) for each analyte: r2 ≥ 0.99.
Retention Time window position establishment	SATISFACTORY	 Perform once per ICAL and at the beginning of the analytical sequence. Position shall be set using the midpoint standard of the ICAL curve when ICAL is performed. On days when ICAL is not performed, the initial CCV is used.
Evaluation of Relative Retention Times (RRT)	SATISFACTORY	 Perform with each sample. RRT of each reported analyte within ± 0.06 RRT units.
Initial Calibration Verification (ICV)	SATISFACTORY	 Perform once after each ICAL, analysis of a second source standard prior to sample analysis. All reported analytes within ± 20% of true value.
Continuing Calibration Verification (CCV)	SATISFACTORY	 Perform daily before sample analysis; after every 12 hours of analysis time; and at the end of the analytical batch run. All reported analytes and surrogates within ± 20% of the true value. All reported analytes and surrogates within ± 50% for end of analytical batch CCV.
Internal Standards (IS)	SATISFACTORY	 Perform every field sample, standard and QC sample. Retention time within ± 10 seconds from retention time of the midpoint standard in the ICAL; EICP area within – 50% to +100% of ICAL midpoint standard. On days when ICAL is not performed, the daily initial CCV can be used.

SDG	Sample Affected	Analyte	Flag	Notes
580-90149-1	OF2	Naphthalene, Acenaphthene, Fluorene, Phenanthrene	J- (all detects) UJ (all non-detects)	MS %R out of control limits low.
	OF2	Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Benzo[b]fluoranthene	J- (all detects) UJ (all non-detects)	MSD %R out of control limits low.

SDG	Sample Affected	Analyte	Flag	Notes
	OF2	Naphthalene, Benzo[b]fluoranthene	J- (all detects) UJ (all non-detects)	MS/MSD RPD out of control limits. Flagged J- because MS and/or MSD %R were out of control limits low.
	OF1	All analytes	J- (all detects) UJ (all non-detects	%R of one of the three surrogates, terphenyl-d14, was out of control limits low.

6. Organochlorine Pesticides Data Review, GC/MS, Method 8081B

6.1 Stage 1 Review

Reviewed Item	Determination	Requirements/Comments	
Sample Custody	SATISFACTORY	 All samples received under proper chain of custody. Sampled: 16 October 2019 between 1258 and 1313; held on ice overnight Relinquished at FedEx: 17 October 2019 at 0849 Arrived at Eurofins TestAmerica: 18 October 2019 at 0915 	
Temperature SATISFAC		Temperature 4 ± 2 °C Temperature at arrival: 1.1, 3.6 and 3.6 °C (3 coolers) Note: Temperature of cooler is below 2 °C, but samples were not frozen, which is acceptable.	
Holding Time SATISFACTORY		Extraction holding time for solid samples is 14 days, and analysis holding time for extracts is 40 days. • Sampled: 16 October 2019 • Extracted: 22 October 2019 (6 days) • Analyzed: 25 October 2019 (3 days)	
Dilution INFORMATION ONLY		No samples were diluted.	

6.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments	
Method Blank (MB)	SATISFACTORY	 Perform one per preparatory batch. No analytes detected > ½ LOQ or > 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater. Common contaminants must not be detected > LOQ. 	
Laboratory Control Sample (LCS)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits 	
Matrix Spike (MS), Matrix Spike Duplicate (MSD), and Relative Percent Difference (RPD)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits RPD of all analytes ≤ 20% (between MS and MSD). 	

Reviewed Item	Determination	Requirements/Comments
Surrogate Spike	SATISFACTORY	 Perform for all field and QC samples. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan.
Compound Identification and Quantitation	SATISFACTORY	 Compounds are identified and quantified automatically by the instrument. Manual integration of one or more chromatographic peaks may be required to correct integration performed by the instrument. All cases where manual review and integration of the chromatograms was required were initialed and dated by the reviewer in the data package. Was manual integration performed? (Y/N): Y
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N
Confirmation by Dual Column Analysis	See Qualification Summary Table	RPD is within method acceptance limits (40%)

Reviewed Item	Determination	Requirements/Comments
Tune Check	SATISFACTORY	 Perform prior to ICAL and prior to each 12-hour period of sample analysis. Mass Specific ion abundance criteria of BFB or DFTPP from method.
Initial Calibration (ICAL) for All Analytes Including Surrogates	SATISFACTORY	 Perform at instrument set-up and after ICV or CCV failure, prior to sample analysis. Each analyte must meet one of the three options below: Option 1: RSD for each analyte ≤ 15%; Option 2: linear least squares regression for each analyte: r2 ≥ 0.99; Option 3: non-linear least squares regression (quadratic) for each analyte: r2 ≥ 0.99.
Retention Time window position establishment	SATISFACTORY	 Perform once per ICAL and at the beginning of the analytical sequence. Position shall be set using the midpoint standard of the ICAL curve when ICAL is performed. On days when ICAL is not performed, the initial CCV is used.
Evaluation of Relative Retention Times (RRT)	SATISFACTORY	 Perform with each sample. RRT of each reported analyte within ± 0.06 RRT units.
Initial Calibration Verification (ICV)	SATISFACTORY	 Perform once after each ICAL, analysis of a second source standard prior to sample analysis. All reported analytes within ± 20% of true value.

Reviewed Item	Determination	Requirements/Comments	
Continuing Calibration Verification (CCV)	See Qualification Summary Table	 Perform daily before sample analysis; after every 12 hours of analysis time; and at the end of the analytical batch run. All reported analytes and surrogates within ± 20% of the true value. All reported analytes and surrogates within ± 50% for end of analytical batch CCV. 	
Internal Standards (IS)	SATISFACTORY	 Perform every field sample, standard and QC sample. Retention time within ± 10 seconds from retention time of the midpoint standard in the ICAL; EICP area within – 50% to +100% of ICAL midpoint standard. On days when ICAL is not performed, the daily initial CCV can be used. 	

SDG	Sample Affected	Analyte	Flag	Notes
TM0997	OF1	Endrin Ketone	J (all detects) UJ (all non-detects)	Dual column RPD for endrin ketone outside of the method acceptance limit of 40%.
	OF2	Oxychlordane	J (all detects) UJ (all non-detects)	Dual column RPD for oxychlordane outside of the method acceptance limit of 40%.
	OF1, OF2	4,4'-DDT	None	The CCV standard (IMJ10305) had a low response on channel A for the target analyte 4,4'-DDT that resulted in a %D that was outside of the DoD QSM acceptance criteria of +/-20%. Since the response was acceptable on channel B, no further action was taken.

7. Polychlorinated Biphenyl (PCB) Congeners Data Review, GC/MS, Method 1668C

7.1 Stage 1 Review

Reviewed Item Determination		Requirements/Comments	
Sample Custody	SATISFACTORY	 All samples received under proper chain of custody. Sampled: 16 October 2019 between 1258 and 1313; held on ice overnight Relinquished at FedEx: 17 October 2019 at 0849 Arrived at Eurofins TestAmerica: 18 October 2019 at 0915 	
Temperature SATISFACTORY		Temperature 4 ± 2 °C Temperature at arrival: 1.1, 3.6 and 3.6 °C (3 coolers) Note: Temperature of cooler is below 2 °C, but samples were not frozen, which is acceptable.	
Holding Time SATISFACTORY		Extraction holding time for solid samples is 14 days, and analysis holding time for extracts is 40 days. • Sampled: 16 October 2019 • Extracted: 25 October 2019 (9 days) • Analyzed: 4 November 2019 (9 days)	
Dilution INFORMATION ONLY		No samples were diluted.	

7.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments
Method Blank (MB)	See Qualification Summary Table	 Perform one per preparatory batch. No analytes detected > ½ LOQ or > 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater. Common contaminants must not be detected > LOQ.
Laboratory Control Sample (LCS)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits
Matrix Spike (MS), Matrix Spike Duplicate (MSD), and Relative Percent Difference (RPD)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits RPD of all analytes ≤ 50% (between MS and MSD).
Surrogate Spike	SATISFACTORY	 Perform for all field and QC samples. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan.
Compound Identification and Quantitation	SATISFACTORY	 Compounds are identified and quantified automatically by the instrument. Manual integration of one or more chromatographic peaks may be required to correct integration performed by the instrument. All cases where manual review and integration of the chromatograms was required were initialed and dated by the reviewer in the data package. Was manual integration performed? (Y/N): Y
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N

Reviewed Item	Determination	Requirements/Comments
Tune Check	SATISFACTORY	 Perform prior to ICAL and prior to each 12-hour period of sample analysis. Mass Specific ion abundance criteria of BFB or DFTPP from method.
Initial Calibration (ICAL) for All Analytes Including Surrogates	SATISFACTORY	 Perform at instrument set-up and after ICV or CCV failure, prior to sample analysis. Each analyte must meet one of the three options below: Option 1: RSD for each analyte ≤ 15%; Option 2: linear least squares regression for each analyte: r2 ≥ 0.99; Option 3: non-linear least squares regression (quadratic) for each analyte: r2 ≥ 0.99.

Reviewed Item	Determination	Requirements/Comments
Retention Time window position establishment	SATISFACTORY	 Perform once per ICAL and at the beginning of the analytical sequence. Position shall be set using the midpoint standard of the ICAL curve when ICAL is performed. On days when ICAL is not performed, the initial CCV is used.
Evaluation of Relative Retention Times (RRT)	SATISFACTORY	Perform with each sample. RRT of each reported analyte within ± 0.06 RRT units.
Initial Calibration Verification (ICV)	SATISFACTORY	 Perform once after each ICAL, analysis of a second source standard prior to sample analysis. All reported analytes within ± 20% of true value.
Continuing Calibration Verification (CCV)	SATISFACTORY	 Perform daily before sample analysis; after every 12 hours of analysis time; and at the end of the analytical batch run. All reported analytes and surrogates within ± 20% of the true value. All reported analytes and surrogates within ± 50% for end of analytical batch CCV.
Internal Standards (IS)	SATISFACTORY	 Perform every field sample, standard and QC sample. Retention time within ± 10 seconds from retention time of the midpoint standard in the ICAL; EICP area within – 50% to +100% of ICAL midpoint standard. On days when ICAL is not performed, the daily initial CCV can be used.

SDG	Sample	Analyte	Flag	Notes
	Affected	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
580-90149-1	OF1	PCB-44 PCB-47	UJ (all detects)	Concentrations detected in the method blank are > 1/10 the concentration detected in the parent sample. Concentrations were flagged as non-detect at their detected concentration.
		PCB-52 PCB-65 PCB-129 PCB-138 PCB-163 PCB-183	No flag	Concentrations detected in the method blank are < 1/10 the concentration detected in the parent sample.
	OF2	PCB-44 PCB-47 PCB-52 PCB-65	UJ (all detects)	Concentrations detected in the method blank are > 1/10 the concentration detected in the parent sample. Concentrations were flagged as non-detect at their detected concentration.
		PCB-129 PCB-138 PCB-163 PCB-183	No flag	Concentrations detected in the method blank are $< 1/10$ the concentration detected in the parent sample.

8. Organotins Data Review, GC/MS, PSEP/Krone Method

8.1 Stage 1 Review

Reviewed Item	Determination	Requirements/Comments
Sample Custody	SATISFACTORY	 All samples received under proper chain of custody. Sampled: 16 October 2019 between 1258 and 1313; held on ice overnight Relinquished at FedEx: 17 October 2019 at 0849 Arrived at Eurofins TestAmerica: 18 October 2019 at 0915
Temperature	SATISFACTORY	Temperature 4 ± 2 °C Temperature at arrival: 1.1, 3.6 and 3.6 °C (3 coolers) Note: Temperature of cooler is below 2 °C, but samples were not frozen, which is acceptable.
Holding Time	See Qualification Summary Table	Extraction holding time for solid samples is 14 days, and analysis holding time for extracts is 40 days. Total Organotins: Sampled: 16 October 2019 Prepared: 31 October 2019 (15 days) Out of limits Analyzed: 1 November 2019 (10 days) Dissolved Organotins: Sampled: 16 October 2019 Prepared: 22 October 2019 (6 days) Analyzed: 5 November 2019 (10 days)
Dilution	INFORMATION ONLY	No samples were diluted.

8.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments
Method Blank (MB)	SATISFACTORY	 Perform one per preparatory batch. No analytes detected > ½ LOQ or > 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater. Common contaminants must not be detected > LOQ.
Laboratory Control Sample (LCS), Laboratory Control Sample Duplicate (LCSD) and Relative Percent Difference (RPD)	See Qualification Summary Table	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits for recovery and RPD.
Matrix Spike (MS), Matrix Spike Duplicate (MSD), and Relative Percent Difference (RPD)	See Qualification Summary Table	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits for recovery and RPD.
Surrogate Spike	SATISFACTORY	 Perform for all field and QC samples. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan.

Reviewed Item	Determination	Requirements/Comments
Compound Identification and Quantitation	SATISFACTORY	 Compounds are identified and quantified automatically by the instrument. Manual integration of one or more chromatographic peaks may be required to correct integration performed by the instrument. All cases where manual review and integration of the chromatograms was required were initialed and dated by the reviewer in the data package. Was manual integration performed? (Y/N): Y
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N

Reviewed Item	Determination	Requirements/Comments
Tune Check	SATISFACTORY	 Perform prior to ICAL and prior to each 12-hour period of sample analysis. Mass Specific ion abundance criteria of BFB or DFTPP from method.
Initial Calibration (ICAL) for All Analytes Including Surrogates	SATISFACTORY	 Perform at instrument set-up and after ICV or CCV failure, prior to sample analysis. Each analyte must meet one of the three options below: Option 1: RSD for each analyte ≤ 15%; Option 2: linear least squares regression for each analyte: r2 ≥ 0.99; Option 3: non-linear least squares regression (quadratic) for each analyte: r2 ≥ 0.99.
Retention Time window position establishment	SATISFACTORY	 Perform once per ICAL and at the beginning of the analytical sequence. Position shall be set using the midpoint standard of the ICAL curve when ICAL is performed. On days when ICAL is not performed, the initial CCV is used.
Evaluation of Relative Retention Times (RRT)	SATISFACTORY	 Perform with each sample. RRT of each reported analyte within ± 0.06 RRT units.
Initial Calibration Verification (ICV)	SATISFACTORY	 Perform once after each ICAL, analysis of a second source standard prior to sample analysis. All reported analytes within ± 20% of true value. In-house laboratory limit of ± 25% of true value was used.
Continuing Calibration Verification (CCV)	SATISFACTORY	 Perform daily before sample analysis; after every 12 hours of analysis time; and at the end of the analytical batch run. All reported analytes and surrogates within ± 20% of the true value. All reported analytes and surrogates within ± 50% for end of analytical batch CCV.

Reviewed Item	Determination	Requirements/Comments	
Internal Standards (IS)	SATISFACTORY	 Perform every field sample, standard and QC sample. Retention time within ± 10 seconds from retention time of the midpoint standard in the ICAL; EICP area within – 50% to +100% of ICAL midpoint standard. On days when ICAL is not performed, the daily initial CCV can be used. 	

SDG	Sample Affected	Analyte	Flag	Notes
580-90149- 1	Total Organotins: OF 1, 2	All analytes	J (all detects), UJ (all non-detects)	Extraction was performed one day out of the holding time range.
	Total Organotins: OF 1, 2	Monobutyltin	J- (all detects), UJ (all non- detects)	The LCS/LCSD RPD was out of control limits. The LCS and LCS %R were within control limits, although the LCS %R was near the low end of the control range.
	Total Organotins: OF 2	Monobutyltin	J- (all detects) UJ (all nondetects)	MS and MSD %R out of control limits low.
	Dissolved Organotins: OF 2	Monobutyltin	J- (all detects) UJ (all non- detects)	MS and MSD %R out of control limits low.

9. Gas-Range Petroleum Products Data Review, GC, Method NWTPH-Gx

9.1 Stage 1 Review

Reviewed Item	Determination	Requirements/Comments
Sample Custody	SATISFACTORY	 All samples received under proper chain of custody. Sampled: 16 October 2019 between 1258 and 1313; held on ice overnight Relinquished at FedEx: 17 October 2019 at 0849 Arrived at Eurofins TestAmerica: 18 October 2019 at 0915
Temperature	SATISFACTORY	Temperature 4 ± 2 °C Temperature at arrival: 1.1, 3.6 and 3.6 °C (3 coolers) Note: Temperature of cooler is below 2 °C, but samples were not frozen, which is acceptable.
Holding Time	SATISFACTORY	Holding time for aqueous samples is 14 days. • Sampled: 16 October 2019 • Analyzed: 22 October 2019 (6 days)
Dilution	INFORMATION ONLY	No samples were diluted.
Headspace	See Qualification Summary Table	Requirement: No significant headspace.

9.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments
Method Blank (MB)	SATISFACTORY	 Perform one per preparatory batch. No analytes detected > ½ LOQ or > 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater. Common contaminants must not be detected > LOQ.
Laboratory Control Sample (LCS)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits
Matrix Spike (MS), Matrix Spike Duplicate (MSD), and Relative Percent Difference (RPD)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits RPD of all analytes ≤ 30% (between MS and MSD).
Surrogate Spike	SATISFACTORY	 Perform for all field and QC samples. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan.
Compound Identification and Quantitation	SATISFACTORY	 Compounds are identified and quantified automatically by the instrument. Manual integration of one or more chromatographic peaks may be required to correct integration performed by the instrument. All cases where manual review and integration of the chromatograms was required were initialed and dated by the reviewer in the data package. Was manual integration performed? (Y/N): N
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N

Reviewed Item	Determination	Requirements/Comments
Initial Calibration (ICAL) for All Analytes Including Surrogates	SATISFACTORY	 Perform at instrument set-up and after ICV or CCV failure, prior to sample analysis. Each analyte must meet one of the three options below: Option 1: RSD for each analyte ≤ 20%; Option 2: linear least squares regression for each analyte: r2 ≥ 0.99; Option 3: non-linear least squares regression (quadratic) for each analyte: r2 ≥ 0.99.
Retention Time window position establishment	SATISFACTORY	 Perform once per ICAL and at the beginning of the analytical sequence. Position shall be set using the midpoint standard of the ICAL curve when ICAL is performed. On days when ICAL is not performed, the initial CCV is used.

Reviewed Item	Determination	Requirements/Comments
Retention Time (RT) Window Width	SATISFACTORY	 Perform at method set-up and after major maintenance (e.g., column change). RT width is ± 3 times standard deviation for each analyte RT from the 72-hour study or 0.03 minutes, whichever is greater.
Initial Calibration Verification (ICV)	SATISFACTORY	 Perform once after each ICAL, analysis of a second source standard prior to sample analysis. All reported analytes within established RT windows. All reported analytes within ± 20% of true value.
Continuing Calibration Verification (CCV)	SATISFACTORY	 Perform daily before sample analysis, after every 10 field samples, and at the end of the analysis sequence with the exception of CCVs for Pesticide multicomponent analytes (i.e., Toxaphene, Chlordane and Aroclors other than 1016 and 1260), which are only required before sample analysis. All reported analytes and surrogates within established RT windows. All reported analytes and surrogates within ± 20% of true value.

7.1.2	The state of the s			
SDG	Sample Affected	Analyte	Flag	Notes
580-90149-	OF 1, 2	All analytes	J- (all	All samples had significant
1			detects)	headspace, defined as a
			UJ (all non-	bubble greater than 6 mm in
			detects)	diameter.

10. Diesel-Range Petroleum Products Data Review, GC, Method NWTPH-Gx

10.1 Stage 1 Review

Reviewed Item	Determination	Requirements/Comments
Sample Custody	SATISFACTORY	 All samples received under proper chain of custody. Sampled: 16 October 2019 between 1258 and 1313; held on ice overnight Relinquished at FedEx: 17 October 2019 at 0849 Arrived at Eurofins TestAmerica: 18 October 2019 at 0915
Temperature	SATISFACTORY	Temperature 4 ± 2 °C Temperature at arrival: 1.1, 3.6 and 3.6 °C (3 coolers) Note: Temperature of cooler is below 2 °C, but samples were not frozen, which is acceptable.
Holding Time	SATISFACTORY	Holding time for aqueous samples is 14 days. • Sampled: 16 October 2019 • Extracted: 30 October 2019 (14 days) • Analyzed: 8 November 2019 (9 days) Rextraction: • Extracted: 8 November 2019 (23 days) • Out of limits • Analyzed: 10 November 2019 (2 days)
Dilution	INFORMATION ONLY	No samples were diluted.

10.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments
Method Blank (MB)	See Qualification Summary Table	 Perform one per preparatory batch. No analytes detected > ½ LOQ or > 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater. Common contaminants must not be detected > LOQ.
Laboratory Control Sample (LCS)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits
Matrix Spike (MS), Matrix Spike Duplicate (MSD), and Relative Percent Difference (RPD)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan. Specified: Lab in-house limits RPD of all analytes ≤ 30% (between MS and MSD).
Surrogate Spike	See Qualification Summary Table	 Perform for all field and QC samples. Recoveries must be within DoD/DOE QSM Appendix C Limits, project limits, or lab in-house limits as specified in the project plan.
Compound Identification and Quantitation	SATISFACTORY	 Compounds are identified and quantified automatically by the instrument. Manual integration of one or more chromatographic peaks may be required to correct integration performed by the instrument. All cases where manual review and integration of the chromatograms was required were initialed and dated by the reviewer in the data package. Was manual integration performed? (Y/N): N
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N

Reviewed Item	Determination	Requirements/Comments	
Initial Calibration (ICAL) for All Analytes Including Surrogates	SATISFACTORY	 Perform at instrument set-up and after ICV or CCV failure, prior to sample analysis. Each analyte must meet one of the three options below: Option 1: RSD for each analyte ≤ 20%; Option 2: linear least squares regression for each analyte: r2 ≥ 0.99; Option 3: non-linear least squares regression (quadratic) for each analyte: r2 ≥ 0.99. 	

Reviewed Item	Determination	Requirements/Comments
Retention Time window position establishment	SATISFACTORY	 Perform once per ICAL and at the beginning of the analytical sequence. Position shall be set using the midpoint standard of the ICAL curve when ICAL is performed. On days when ICAL is not performed, the initial CCV is used.
Retention Time (RT) Window Width	SATISFACTORY	 Perform at method set-up and after major maintenance (e.g., column change). RT width is ± 3 times standard deviation for each analyte RT from the 72-hour study or 0.03 minutes, whichever is greater.
Initial Calibration Verification (ICV)	SATISFACTORY	 Perform once after each ICAL, analysis of a second source standard prior to sample analysis. All reported analytes within established RT windows. All reported analytes within ± 20% of true value.
Continuing Calibration Verification (CCV)	SATISFACTORY	 Perform daily before sample analysis, after every 10 field samples, and at the end of the analysis sequence with the exception of CCVs for Pesticide multicomponent analytes (i.e., Toxaphene, Chlordane and Aroclors other than 1016 and 1260), which are only required before sample analysis. All reported analytes and surrogates within established RT windows. All reported analytes and surrogates within ± 20% of true value.

10.4 Qua	.4 Quaimcation summary rable				
SDG	Sample Affected	Analyte	Flag	Notes	
580-90149- 1	OF 2	#2 Diesel (C10- C24)	J+ (all detects); no flag (all non-detects)	The o-terphenyl surrogate %R was greater than control limits.	
580-90149-1	OF 1, 2	All analytes	No flags	The method blank recovered outside control limits, low-biased, for the o-terphenyl surrogate. Samples associated with this method blank were re-extracted outside of holding time with concurrent results. Both sets of data were reported, and the first set (within holding time) is recommended for use by this data validation report.	

11. Dissolved Organic Carbon, Method EPA 415.1

11.1 Stage 1 Review

Reviewed Item	Determination	Requirements/Comments		
		All samples received under proper chain of custody.		
		• Sampled: 16 October 2019 between 1258 and 1313;		
Sample Custody	SATISFACTORY	held on ice overnight		
		Relinquished at FedEx: 17 October 2019 at 0849		
		Arrived at Katahdin: 18 October 2019 at 0935		
Temperature		Temperature 4 ± 2 °C		
	SATISFACTORY	• Temperature at arrival: 4.3, 1.1, 3.2 °C (3 coolers)		
		Note: Temperature of cooler is below 2 °C, but samples		
		were not frozen, which is acceptable.		
		Holding time for aqueous samples is 28 days.		
Holding Time	SATISFACTORY	Sampled: 16 October 2019		
		Analyzed: 25 October 2019 (9 days)		
Dilution	INFORMATION ONLY	No samples were diluted.		

11.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments		
Method Blank (MB)	SATISFACTORY	 Perform one per preparatory batch. No analytes detected > ½ LOQ or > 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater. 		
Laboratory Control Sample (LCS)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within project limits, or lab inhouse limits as specified in the project plan. Specified: Lab in-house limits 		
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N 		

Reviewed Item	Determination	Requirements/Comments		
Initial Calibration (ICAL) for All Analytes Including Surrogates	SATISFACTORY	 Perform prior to sample analysis. Blank plus 5 points. r2 ≥ 0.995. 		
Initial Calibration Verification (ICV)	SATISFACTORY	 Perform daily, prior to sample analysis, immediately following ICAL. Within ± 10% of expected concentration. 		
Carbonate-bicarbonate (CO ₃ -HCO ₃) Standard	SATISFACTORY	 For instruments which subtract the inorganic concentration from the total to calculate the TOC, ± 10% from expected concentration. For instruments which acidify and sparge the inorganic carbon, a recovery of less than the contract-required detection limit (CRDL) is required. 		
Continuing Calibration Verification (CCV)	SATISFACTORY	 Perform before sample analysis, after every 10 samples and end of run. Within ± 10% of expected concentration. 		

Reviewed Item	Determination Requirements/Comments		
Calibration Blank Verification	SATISFACTORY	Perform after ICV and CCVs	
(ICB, CCB)	SATISFACTORT	• < CRDL	
Contract-Required Detection Limit (CRDL) Verification Standard (< 2X CRDL) or LCS	SATISFACTORY	 After initial CCV Within ± 20% of expected concentration. 	

No data was qualified based on validation.

12. Total Suspended Solids, Method SM 2540D

12.1 Stage 1 Review

Reviewed Item	Determination	Requirements/Comments		
		All samples received under proper chain of custody.		
		• Sampled: 16 October 2019 between 1258 and 1313;		
Sample Custody	SATISFACTORY	held on ice overnight		
		Relinquished at FedEx: 17 October 2019 at 0849		
		Arrived at Katahdin: 18 October 2019 at 0935		
Temperature		Temperature 4 ± 2 °C		
	SATISFACTORY	• Temperature at arrival: 4.3, 1.1, 3.2 °C (3 coolers)		
	SATISFACIORY	Note: Temperature of cooler is below 2 °C, but samples		
		were not frozen, which is acceptable.		
Holding Time		Holding time for preparation is 7 days.		
	CATICEACTORY	Sampled: 16 October 2019		
	SATISFACTORY	Prepared: 22 October 2019 (7 days)		
		Analyzed: 28 October 2019 (6 days)		

12.2 Stage 2a Review

Reviewed Item	Determination	Requirements/Comments
Method Blank (MB)	SATISFACTORY	 Perform one per preparatory batch. No analytes detected > ½ LOQ or > 1/10th the amount measured in any sample or 1/10th the regulatory limit, whichever is greater.
Laboratory Control Sample (LCS)	SATISFACTORY	 Perform one per preparatory batch. Recoveries must be within project limits, or lab inhouse limits as specified in the project plan. Specified: Lab in-house limits
Field Duplicates (FD)	NA	 RPD of all analytes ≤ 30% (between sample and FD), or as specified by project limits. Were FDs collected? (Y/N): N

12.3 Stage 2b Review

Not applicable.

12.4 Qualification Summary Table

No data was qualified based on validation.

13. Summary of Data Quality Indicators

This section provides an overall quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability. The data quality indicators defined in the QAPP and presented in this section include precision, accuracy, representativeness, completeness, and sensitivity.

Precision

Precision is defined as the degree of agreement between or among independent, similar, or repeated measures. Duplicate pairs such as MS/MSD, LCS/LCSD, laboratory duplicate, and field duplicate samples are evaluated as RPD. The relative percent difference (RPD) for these analyses is calculated as follows:

$$RPD = \frac{|S_1 - S_2|}{S_{avg}} \times 100\%$$

Where S_1 and S_2 = the observed concentration of analyte in the sample and its duplicate, and

 S_{avg} = the average of observed analyte concentration in the samples and its duplicate.

Measurements for which RPD is out of control limits are discussed in sections 4.4, 6.4, and 8.4. The accuracy of the data set is considered acceptable after qualification (flagging) of estimated results.

Accuracy

Accuracy is the amount of agreement between a measured value and the true value. Accuracy, expressed as %Recovery (%R), was assessed for each method, analyte, and matrix, by comparing MS/MSD, LCS/LCSD, and surrogate recoveries to the method limits. Measurements for which accuracy is out of control limits are discussed in section 4.4, 5.4, 8.4, and 10.4. The accuracy of the data set is considered acceptable after qualification (flagging) of estimated results.

Representativeness

Representativeness is a qualitative parameter that expresses the degree to which the sample data are characteristic of a population and is evaluated by reviewing the QC results of holding times and blank samples. Positive detects of compounds in the method blank samples identify compounds that may have been introduced into the samples during preparation, or analysis.

All samples for each method and matrix were evaluated for holding time compliance. All holding times and temperature requirements were met with the following exception: for total organotins, the extraction holding time criteria was exceeded by one day. All results were non-detect, and the non-detect data was qualified with UJ (section 8.4). The dissolved organotin samples were analyzed within holding times and results were also non-detect.

Method blanks were performed at the required frequency and contaminants were not detected in analyses, with two exceptions. For PCB congeners (section 7.4), various analytes are detected in the method blank at low concentrations, with some being > 1/10 the concentration detected in the parent sample. These results that were detected in the method blank were flagged as UJ in the parent sample. For NWTPH-Dx (Section 10.4), the oterphenyl surrogate in the method blank recovered outside control limits, low-biased. Samples associated with this method blank were re-extracted outside of holding time with concurrent results. Both sets of data were reported, and the first set (within holding time) is recommended for use by this data validation report.

Additionally, a filter blank was performed for the dissolved metals analysis and zinc was detected in the filter blank above the LOQ and similar in concentration to the total metals and the filtered dissolved metals sample. The dissolved metals sample result for zinc was flagged as UJ and reported at the numerical value of the sample result (section 2.4).

For NWTPH-Gx (section 9.4), all samples had significant headspace, defined as a bubble greater than 6 mm in diameter, and detects were flagged J- and non-detects were flagged UJ.

The representativeness of the project data is considered acceptable after qualification (flagging) of estimated results.

Completeness

Analytical completeness was calculated as defined in the QAPP and expressed as the percentage of measurements that were judged to be valid, i.e., not rejected, and acceptable for all intended date use. No data were rejected; analytical completeness for this sampling event was 100%.

Sensitivity

Sensitivity is the ability of an analytical method or instrument to discriminate between measurement responses representing different concentrations. The sensitivity of the analytical methods (i.e., method reporting limits) identified for this project comply with the QAPP (USACE 2019a).

14. Conclusions

The overall assessment of data indicates that the data set met project requirements. Sample results that were qualified should be used with caution if results are close to projection decision limits or regulatory benchmarks. Based upon the data review performed, all results are considered valid and usable for all purposes.

15. References

Department of Defense (DoD), 2018a. General Data Validation Guidelines, Version 5.1, February 9.

DoD, 2018b. Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (SW-846 8260, 8270). August 3.

DoD, 2019. DoD Quality Systems Manual for Environmental Laboratories, Version 5.3, May 8.

United States Army Corps of Engineers (USACE), 2019a. Work Plan with Quality Assurance Project Plan (WP-QAPP) Amendment 1 for Catch Basin Solids and Stormwater Sampling at Sandblast AOPC, Bradford Island, Cascade Locks, Oregon, March 4.

USACE, 2019b. Stormwater Sampling Field Report, Sandblast AOPC, Bradford Island, Cascade Locks, Oregon. July 11.

United Stated Environmental Protection Agency (USEPA), 2009. *Guidance for Labeling Externally Validated Data for Superfund Use*, EPA 540-R-08-00. January 13.

USEPA, 2016. National Functional Guidelines for High Resolution Superfund Methods Data Review, EPA 542-B-16-001. April.

USEPA, 2017a. National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA 540-R-2017-001. January.

USEPA, 2017b. National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-2017-002. January.

USPEA, 2016. Quick Guide To Drinking Water Sample Collection. September.

Table 1. Sample Locations, Sample ID Numbers, and Sample Dates.

Analyses	OF-1	OF-2	Sample Date
Total and Dissolved Metals, EPA 200.8	N	N; MS/MSD	16 October 2019
Total and Dissolved Mercury, EPA 7470A	N	N; MS/MSD	16 October 2019
PAHs, EPA 8270D SIM	N	N; MS/MSD	16 October 2019
PCB Congeners, EPA 1668C	N	N; MS/MSD	16 October 2019
Organochlorine Pesticides, EPA 8081B	N	N; MS/MSD	16 October 2019
Total Organotins, PSEP	N	N; MS/MSD	16 October 2019
Gasoline-Range Petroleum Products, NWTPH-Gx	N	N; MS/MSD	16 October 2019
Diesel-Range Petroleum Products, NWTPH-Dx	N	N; MS/MSD	16 October 2019
SVOCs, EPA 8270D	N	N; MS/MSD	16 October 2019
Hardness as CaCO ₃ , EPA 200.8	N	N	16 October 2019
Dissolved Organic Carbon, EPA 415.1	N	N	16 October 2019
Total Suspended Solids, SM 2540D	N	N	16 October 2019
Temperature, Field Measurement	F	F	16 October 2019
pH, Field Measurement	F	F	16 October 2019

N = normal sample; MS/MSD = extra sample volume sufficient for MS/MSD was obtained; F = field measurement.

Table 2. Limit and Data Qualifier Flag Definitions.

Limit	Definition
LOQ	Limit of Quantitation: The smallest concentration that produces a quantitative result with known and recorded precision and bias. For DoD/DOE projects, the LOQ shall be set at or above the concentration of the lowest initial calibration standard and within the calibration range.
LOD	Limit of Detection: The smallest concentration of a substance that must be present in a sample in order to be detected at the DL with 99% confidence. At the LOD, the false negative rate (Type II error) is 1%. A LOD may be used as the lowest concentration for reliably reporting a non-detect of a specific analyte in a specific matrix with a specific method at 99% confidence. A LOD is typically 2x to 4x the DL.
DL	Detection Limit: The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration with 99% confidence. At the DL, the false positive rate (Type I error) is 1%. A DL may be used as the lowest concentration for reliably reporting a detection of a specific analyte in a specific matrix with a specific method with 99% confidence.
Flag	Definition
J	The analyte was detected above the DL. The reported result is an estimated value with an unknown bias. The result receives a J-flag if it is below the LOQ, or due to other quality reasons.
J+	The analyte was detected above the DL. The result is an estimated quantity, but the result may be biased high. The result receives a J-flag if it is below the LOQ, or due to other quality reasons.
J-	The analyte was detected above the DL. The result is an estimated quantity, but the result may be biased low. The result receives a J-flag if it is below the LOQ, or due to other quality reasons.
U	The analyte was not detected and was reported as less than the LOD or as defined by the customer. The LOD has been adjusted for any dilution or concentration of the sample.
UJ	The analyte was not detected and was reported as less than the LOD or as defined by the customer. However, the associated numerical value is approximate.
X	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Attachment 1:

Table 3. Validated Data (Detects are Bold).

Antimony 0.275 0.20 0.10 0.011 μg/L 1 0.085 J 0.20 0.10 0.011 μg/L 1 0.016 J 0.20 0.10 0.011 μg/L Arsenic 0.80 U 1.0 0.80 0.45 μg/L 1 0.80 U 0.20 0.40 0.0059 μg/L 1 0.010 U 0.20 0.40 0.0059 μg/L U U U U U U U U U	D-1-1-N	OF-1 (CB-1	<u> </u>						OF-2														
Column	Bold Number = Detected (N	Not bold = non-detect														-							
Section Sect			Qualifier	100	LOD	MDI	Dil Fac		Posult	Qualifier	100	100	MDI	Llait	Dil Fac								
State March Marc							Dii Fac				L				DII Fac	1							
Mart			1			ļ	1								1	1							
Self 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3.24		1.0	0.80	0.045 μg/L	1		0.835		1.0	0.80		μg/L	1	1							
See 1. Se							1								1	1							
Control Section Property Control Property Property Control Property	Nickel	3.47		0.40	0.24	0.030 μg/L	1		0.667		0.40	0.24	0.030	μg/L	1	1							
1.		<u> </u>					1 1								1	1							
Series 187							1				 				1	1							
Section Sect	Method: 200.8 - Dissolved I	Metals (ICP/MS)														Fi	lter Blank	k					
Section	Analyte	Result	ļ	1			Dil Fac			-					Dil Fac		esult	Qualifier					Dil Fac
Column		<u> </u>					1 1								1	1							
Marie		<u> </u>	J			0.0059 μg/L	1							μg/L	1	1						μg/L	
Section Property							1			J	ļ				1 1	1							
Section Sect							1								1	1			<u> </u>				
Section 1985			J				1			J					1 1	1							
Column C							1							~~~~~~~~~	1	1		U	J				
Section Sect	ZITC	17.1	03	2.0	1.6	0.78 µg/L	1		29.5	03	2.0	1.0	0.78	μg/ L		<u> </u>	13.0	***************************************	2.0	1.0	0.78	μg/L	
Column C		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Qualifier	100	LOD	MDI Unit	Dil Fac	***************************************	Result	Qualifier	100	IOD	MDI	Unit	Dil Fac	R	esult	Qualifier	100	LOD	MDI	Unit	Dil Fac
State Stat	***************************************						1							************	1	1			4				Dirac
State Stat	Method: 7470 - Dissolved N	Mercury (CVAA)						***************************************	***************************************	***************************************	***************************************			waannaannaannaannaannaan									
Company Comp		Result					Dil Fac					LOD			Dil Fac								
Control Cont	Mercury	0.10	U	0.20	0.10	0.013 μg/L	1		0.015	J	0.20	0.10	0.013	μg/L	1	1							
Table 1.5 1.																							
Scale Control Contro							Dil Fac								Dil Fac	1							
Property 1.5	Bis (2-ethylhexyl) phthalate	0.50	UJ	1.0	0.50	0.50 μg/L	1		0.50	UJ	0.99	0.50	0.50	μg/L	1	1							
Company Comp							1								- 1	1							
The control							1								1	1							
The control	Method: 8270D SIM - Polyc	cyclic Aromatic Hvdro	carbons (PA	Hs) by GC	/MS SIM		 									_							
Section Company Comp	Analyte	Result	Qualifier	LOQ	LOD		Dil Fac					LOD			Dil Fac	1							
Joseph Color 1							1 1						0.0071	ug/L		1							
The column						0.0065 ug/L	1								1	1							
Section Sect							1								1 1	1							
Secretary Control Co						0.018 ug/L	1								1	1							
Company Comp							1	***************************************							1 1	1							
Second Company Compa						0.0065 ug/L	1						0.0071	ug/L	1	1							
Complete							1								1 1	1							
March Marc		0.026	J-			0.014 ug/L	1				0.071		0.015	ug/L	1	1							
Standard			 				1	***************************************							1 1	1							
March Marc							1								1	1							
March March Color Colo							1	***************************************							1 1	1							
March March Color Colo																							
Procession 1960 1		γ		LOQ	LOD	MDL Unit	Dil Fac		Result	Qualifier	LOQ	LOD	MDL	Unit	Dil Fac								
Proceed Process Proc			<u> </u>				1								1	1							
Free-March 1,000							1						0.0015	ug/L	1	1							
Control Cont			4				1								1	1							
Second S		0.0051	U	0.010	0.0051	0.0012 ug/L	1		0.0052	U		0.0052	0.0012	ug/L	1 1	1							
Section CCC U 0.000 9232 ECC 944 1 9.25 U CCC 9309 3293 1961 2 1 1 1 1 1 1 1 1	A La La Cola La cola con a	1 0.0051	1				1 1								1	1							
Land				0.020			1 -1									1							
Incontrol	4,4'-DDE Dieldrin	0.010 0.010	U U	0.020	0.010	0.0013 ug/L	1								1								
Enternal Assertion Company Com	4,4'-DDE Dieldrin Endrin	0.010 0.010 0.010	U U U	0.020 0.020	0.010 0.010	0.0013 ug/L 0.0017 ug/L	1 1 1		0.01		0.021	0.010	0.0017	ug/L	1	1							
Emboding Control Con	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II	0.010 0.010 0.010 0.010 0.010	U U U U	0.020 0.020 0.020 0.020	0.010 0.010 0.010 0.010	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0012 ug/L	1 1 1 1		0.01 0.01 0.01	U U	0.021 0.021 0.021	0.010 0.010 0.010	0.0017 0.0018 0.0012	ug/L ug/L ug/L	1 1	1 1 1							
Earl February	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT	0.010 0.010 0.010 0.010 0.010 0.010	U U U U U	0.020 0.020 0.020 0.020 0.020	0.010 0.010 0.010 0.010 0.010	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0012 ug/L 0.0018 ug/L	1 1 1 1 1		0.01 0.01 0.01 0.01	U U	0.021 0.021 0.021 0.021	0.010 0.010 0.010 0.010	0.0017 0.0018 0.0012 0.0018	ug/L ug/L ug/L ug/L	1 1 1	1 1 1 1							
24-000	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate	0.010 0.010 0.010 0.010 0.010 0.010 0.010	U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020	0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0012 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L	1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.01	υ υ υ υ	0.021 0.021 0.021 0.021 0.021 0.021	0.010 0.010 0.010 0.010 0.010 0.010	0.0017 0.0018 0.0012 0.0018 0.0013	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1	1 1 1 1 1 1							
25-697 0.01 0.000 0.00	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.10	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0012 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L	1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.01 0.052	U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.10	0.010 0.010 0.010 0.010 0.010 0.010 0.052	0.0017 0.0018 0.0012 0.0018 0.0013 0.0014 0.0017	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1	1 1 1 1 1 1 1							
Total DIOS	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053) 0 0 0 0 0 0	0.020 0.020 0.020 0.020 0.020 0.020 0.10 0.020 0.020	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0012 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L	1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.01 0.052 0.01	U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.10 0.021 0.021	0.010 0.010 0.010 0.010 0.010 0.010 0.052 0.010	0.0017 0.0018 0.0012 0.0018 0.0013 0.0014 0.0017 0.0016 0.0049	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1							
Total DIOS	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053	n n n n n n n	0.020 0.020 0.020 0.020 0.020 0.020 0.10 0.020 0.020 0.020	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0012 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.01 0.052 0.01 0.01	U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010	0.0017 0.0018 0.0012 0.0018 0.0013 0.0014 0.0017 0.0016 0.0049	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Open	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0012 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0047 ug/L 0.0047 ug/L 0.0048 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01	U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021	0.010 0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.010 0.010	0.0017 0.0018 0.0012 0.0013 0.0014 0.0017 0.0016 0.0049 0.0047 0.0047	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Easily Countries Countri	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDEs	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.	0 0 0 0 0 0 0 0	0.020 0.020 0.020 0.020 0.020 0.020 0.10 0.020 0.020 0.020 0.020	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.020	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021	U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.010 0.021	0.0017 0.0018 0.0012 0.0013 0.0014 0.0017 0.0016 0.0049 0.0047 0.0047 0.0018	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
District	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDD 7,4'-DDT Total DDDs Total DDEs Total DDTs	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.01 0.010	0 0 0 0 0 0 0 0 0	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.020 0.020	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021		0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.021 0.021	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0049 0.0047 0.0048 0.0010 0.0018	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Monthouts 0.33 U	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDEs Total DDTs Oxychlordane	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.010) () () () () () () () () () (0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041 0.041 0.041	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.020 0.020 0.020 0.010	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.021 0.021 0.021	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.021	0.010 0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.021 0.021 0.021 0.010	0.0017 0.0018 0.0012 0.0013 0.0014 0.0017 0.0016 0.0049 0.0047 0.0047 0.0018 0.0010	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Testing but	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041 0.041 0.041	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0019 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.021	0.010 0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.021 0.021 0.021 0.010	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0048 0.0010 0.0018 0.0054	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Method: NVTPHS-V: Gasoline Mesult Qualifier QQ QD MOL Dil Fac Result Qualifier QQ QD MOL Dil Fac QD QD MOL Dil Fac Result Qualifier QD QD MOL Dil Fac Result QD QD MOL Dil Fac Result QD QD MOL Dil Fac QD QD QD QD QD QD QD Q	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Monobutyltin	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041 0.041 0.041 0.042 0.032	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.020	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L 0.0010 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.021 0.021 0.021 0.021 Result 0.17 0.14	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.033	0.010 0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.021 0.021 0.021 0.010	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.062 0.067	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Result Output O	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Monobutyltin Tetra-n-butyltin	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041 0.041 0.041 0.042 0.032 0.32 0.32	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.020	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0019 ug/L 0.0010 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.021 0.021 0.021 0.021 Result 0.17 0.14 0.22	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.043 0.033	0.010 0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.021 0.021 0.021 0.010	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0049 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.062 0.067 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Discription	4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Monobutyltin Tetra-n-butyltin	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041 0.041 0.041 0.042 0.032 0.32 0.32	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.020	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0019 ug/L 0.0010 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.021 0.021 0.021 0.021 Result 0.17 0.14 0.22	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.043 0.033	0.010 0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.021 0.021 0.021 0.010	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0049 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.062 0.067 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Monobulytin 0.13 U 0.32 0.065 ug/L 1 0.13 U 0.32 0.065 ug/L 1 0.13 U 0.32 0.045 ug/L 1 0.18 U 0.30 0.00 ug/L 1 1 0.18 U 0.30 Ug/L 1 1 0.30 Ug/L 1 Ug/L	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Tota Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.010	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.032 0.032 0.32 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0018 ug/L 0.0019 ug/L 0.0018 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L 0.0050 ug/L 0.0060 ug/L 0.011 ug/L 0.050 ug/L	1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.033 0.33 0.33	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.021 0.021 0.021 0.010	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0049 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.062 0.067 0.11 0.051	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Tributyltin 0.19 U 0.32 0.049 ug/L 1 0.18 U 0.30 0.046 ug/L 1	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDD Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Tota Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.010	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041 0.041 0.041 0.032 0.32 0.32 0.32 0.32	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0010 ug/L 0.0018 ug/L 0.0010 ug/L 0.0018 ug/L 0.0019 ug/L 0.0050 ug/L MDL Unit 0.060 ug/L 0.050 ug/L MDL Unit 0.060 ug/L 0.050 ug/L	1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.033 0.33 0.33 0.33	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.021 0.021 0.021 0.010	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.062 0.067 0.11 0.051	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Result Qualifier LOQ LOD MDL Unit Dil Fac Result Qualifier LOQ LOD MDL Unit LOD LO	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Monobutyltin Monobutyltin Monobutyltin Monobutyltin Monobutyltin Monobutyltin Monobutyltin	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.010	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041 0.041 0.041 0.041 0.032 LOQ 0.32 0.32 0.32 0.32 0.32	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0053 ug/L MDL Unit 0.066 ug/L 0.050 ug/L 0.065 ug/L 0.066 ug/L 0.066 ug/L 0.066 ug/L 0.066 ug/L	1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.021 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.15 0.13	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.030 0.33 0.33 0.33 0.33	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.021 0.021 0.021 0.010	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.062 0.051 MDL 0.057 0.062	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Result Qualifier LOQ LOD MDL Unit Dil Fac Result Qualifier LOQ LOD MDL Unit LOD LO	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Tributyltin	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.032 0.032 0.32 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.020 0.020	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0053 ug/L MDL Unit 0.066 ug/L 0.11 ug/L 0.060 ug/L 0.050 ug/L 0.065 ug/L 0.065 ug/L 0.11 ug/L	1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.021 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.15 0.13 0.20	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.031 0.33 0.33 0.33 0.33 0.33 0.33	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.021 0.021 0.021 0.010	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.062 0.067 0.11 0.051 MDL 0.057 0.062 0.10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Method: NWTPH-Dx - Dissel-Range Petroleum Product (GC) Image: Control of the product	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Tributyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Tetra-n-butyltin Tributyltin	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.02 0.02	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.032 0.032 0.32 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.020 0.020	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0053 ug/L MDL Unit 0.066 ug/L 0.11 ug/L 0.060 ug/L 0.050 ug/L 0.065 ug/L 0.065 ug/L 0.11 ug/L	1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.021 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.15 0.13 0.20	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.031 0.33 0.33 0.33 0.33 0.33 0.33	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.021 0.021 0.021 0.010	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.062 0.067 0.11 0.051 MDL 0.057 0.062 0.10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Analyte Result Qualifier LOQ LOD MDL Unit Dil Fac Result Qualifier LOQ LOD MDL Unit Dil Fac Result Qualifier LOQ LOD MDL Unit Dil Fac Result Qualifier LOQ LOD MDL Unit LOT LO	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Tota Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin	0.010	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.032 0.032 0.32 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L 0.0050 ug/L 0.066 ug/L 0.011 ug/L 0.050 ug/L 0.060 ug/L 0.060 ug/L 0.011 ug/L 0.060 ug/L 0.011 ug/L 0.049 ug/L 0.049 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.15 0.13 0.20 0.18 Result	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.031 0.33 0.33 0.33 0.33 0.33 0.33 0.	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0054 MDL 0.062 0.067 0.11 0.051 MDL 0.057 0.062 0.10 0.0646 MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
#Z Diesel (C10-C24)	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Tota Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tetra-n-butyltin Tributyltin	0.010	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.032 0.032 0.32 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L 0.0050 ug/L 0.066 ug/L 0.011 ug/L 0.050 ug/L 0.060 ug/L 0.060 ug/L 0.011 ug/L 0.060 ug/L 0.011 ug/L 0.049 ug/L 0.049 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.15 0.13 0.20 0.18 Result	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.031 0.33 0.33 0.33 0.33 0.33 0.33 0.	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0054 MDL 0.062 0.067 0.11 0.051 MDL 0.057 0.062 0.10 0.0646 MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
General Chemistry Result Qualifier LOQ LOD MDL Unit LOQ LOD LO	Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDB 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.010 0.0	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.032 0.32 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0048 ug/L 0.0049 ug/L 0.0018 ug/L 0.0018 ug/L 0.0010 ug/L 0.0018 ug/L 0.0018 ug/L 0.0053 ug/L MDL Unit 0.066 ug/L 0.050 ug/L 0.050 ug/L 0.065 ug/L 0.065 ug/L 0.065 ug/L 0.011 ug/L 0.065 ug/L 0.011 ug/L 0.069 ug/L 0.011 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.15 0.13 0.20 0.18 Result 0.20	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.030 0.33 0.33 0.33 0.33 0.33 LOQ 0.30 0.30 0.30 0.30	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.057 0.062 0.10 0.057 0.062 0.10 0.046	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Result Qualifier LOQ LOD MDL Unit Result Qualifier LOQ LOD LOD MDL Unit Result Qualifier LOQ LOD LOD MDL Unit Result Qualifier LOQ LOD	Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDB 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte	0.010	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.041 0.041 0.041 0.020 LOQ 0.32 0.32 0.32 0.32 0.32 LOQ 0.32 0.32 LOQ 0.32 0.32 0.32 LOQ 0.32	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0010 ug/L 0.0018 ug/L 0.0018 ug/L 0.0053 ug/L MDL Unit 0.060 ug/L 0.050 ug/L 0.050 ug/L 0.065 ug/L 0.011 ug/L 0.065 ug/L 0.011 ug/L 0.069 ug/L 0.011 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.15 0.13 0.20 0.18 Result 0.20	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.030 0.33 0.33 0.33 0.33 0.33 LOQ 0.30 0.30 0.30 0.30 LOQ 0.25	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.057 0.062 0.11 0.057 0.062 0.10 0.046 MDL 0.046 MDL 0.046 MDL 0.046 MDL 0.046	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Total Hardness, EPA 200.8 1960	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Tributyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte #2 Diesel (C10-C24)	0.010	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.041 0.041 0.041 0.020 LOQ 0.32 0.32 0.32 0.32 0.32 LOQ 0.32 0.32 LOQ 0.32 0.32 0.32 LOQ 0.32	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0010 ug/L 0.0018 ug/L 0.0018 ug/L 0.0053 ug/L MDL Unit 0.060 ug/L 0.050 ug/L 0.050 ug/L 0.065 ug/L 0.011 ug/L 0.065 ug/L 0.011 ug/L 0.069 ug/L 0.011 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.15 0.13 0.20 0.18 Result 0.20	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.030 0.33 0.33 0.33 0.33 0.33 LOQ 0.30 0.30 0.30 0.30 LOQ 0.25	0.010 0.010 0.010 0.010 0.010 0.052 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.057 0.062 0.11 0.057 0.062 0.10 0.046 MDL 0.046 MDL 0.046 MDL 0.046 MDL 0.046	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Dissolved Organic Carbon, EPA 415.1 6.1 1.0 0.50 0.32 mg/L 2.5 1.0 0.50 0.32 mg/L 0.71 0.50 0.32 mg/L 0.72	Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Tributyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte #2 Diesel (C10-C24) General Chemistry	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.010 0.0	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.032 0.032 0.32 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.15 0.13 0.20 0.18 Result 0.18 Result 0.18 Result 0.19 Result 0.19 Result 0.19 0.18	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.030 0.33 0.33 0.33 LOQ 0.30 0.30 0.30 0.30 LOQ 0.25 LOQ 0.25	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0054 MDL 0.062 0.10 0.062 0.11 0.051 MDL 0.062 0.10 0.062 0.10 0.062 0.10 0.046 MDL 0.046	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				LOQ	LOD	MDL	Unit	
Method: 1668C - Polychorinated Biph-nyl Congress (HRGC/HRMS) Log Log Log Log Log Duit Fac Analyte Result Qualifier LOQ LOD MDL Unit Dil Fac DL Unit Dil Fac PCB-1 9.8 U 200 0.46 pg/L 1 2.3 J 200 0.51 pg/L 1 PCB-2 20 U 200 0.37 pg/L 1 20 U 200 0.41 pg/L 1 PCB-3 1.0 J 200 0.42 pg/L 1 2.1 J 200 0.46 pg/L 1 PCB-4 25 U 200 13 pg/L 1 25 U 200 20 pg/L 1 PCB-5 25 U 200 15 pg/L 1 25 U 200 11 pg/L 1 PCB	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Tota Analyte Dibutyltin Monobutyltin Tributyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte #2 Diesel (C10-C24) General Chemistry Analyte Total Hardness, EPA 200.8	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.010 0.0	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.032 0.032 0.32 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD LOD LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0053 ug/L MDL Unit 0.066 ug/L 0.11 ug/L 0.050 ug/L 0.065 ug/L 0.011 ug/L 0.069 ug/L 0.011 ug/L 0.049 ug/L MDL Unit 0.049 ug/L 0.049 ug/L 0.049 ug/L 0.049 ug/L MDL Unit 0.049 ug/L 0.049 ug/L MDL Unit 0.10 mg/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.13 0.20 Result 0.18 Result 0.18 Result 0.18 Result 0.19 Result	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.031 0.33 0.33 0.33 0.33 0.33 0.33 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD LOD LOD LOD LOD	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0054 MDL 0.062 0.067 0.11 0.051 MDL 0.064 0.0046 MDL 0.046 MDL 0.046 MDL 0.10 MDL 0.10 MDL 17	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				LOQ	LOD	MDL	Unit	
Analyte Result Qualifier LOQ LOD MDL Unit Dil Fac PCB-1 9.8 U 200 0.46 pg/L 1 2.3 J 200 0.51 pg/L 1 PCB-2 20 U 200 0.37 pg/L 1 20 U 200 0.41 pg/L 1 PCB-3 1.0 J 200 0.42 pg/L 1 2.1 J 200 0.46 pg/L 1 PCB-4 25 U 200 15 pg/L 1 25 U 200 11 pg/L 1 PCB-5 25 U 200 15 pg/L 1 25 U 200 11 pg/L 1 PCB-6 25 U 200 12 pg/L 1 25 U 200 8.9 pg/L 1	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Tota Analyte Dibutyltin Monobutyltin Tributyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte #2 Diesel (C10-C24) General Chemistry Analyte Total Hardness, EPA 200.8 Total Suspended Solids, SM	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.010 0.0	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.032 0.032 0.32 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD LOD LOD LOD LOD LOD LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0050 ug/L 0.066 ug/L 0.11 ug/L 0.050 ug/L 0.060 ug/L 0.060 ug/L 0.060 ug/L 0.011 ug/L 0.090 ug/L 0.090 ug/L 0.011 ug/L 0.010 ug/L 0.011 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.13 0.20 0.18 Result 0.17 0.18 Result 0.18 Result 0.17 0.18 Result 0.17	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.033 0.33 0.33 0.33 0.33 0.33 0.33 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.057 0.062 0.10 0.062 0.10 0.046 MDL 0.057 MDL 0.057 MDL 0.070 MDL 0.070 MDL 0.070	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		esult	Qualifier				***************************************	
PCB-1 9.8 U 200 0.46 pg/L 1 2.3 J 200 0.51 pg/L 1 PCB-2 20 U 200 0.37 pg/L 1 20 U 200 0.41 pg/L 1 PCB-3 1.0 J 200 0.42 pg/L 1 2.1 J 200 0.46 pg/L 1 PCB-4 25 U 200 13 pg/L 1 25 U 200 20 11 pg/L 1 PCB-5 25 U 200 15 pg/L 1 25 U 200 11 pg/L 1 PCB-6 25 U 200 12 pg/L 1 25 U 200 8.9 pg/L 1	A,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDEs Total DDTs Oxychlordane Method: PSEP/Krone - Tota Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte #2 Diesel (C10-C24) General Chemistry Analyte Total Hardness, EPA 200.8 Total Suspended Solids, SM Dissolved Organic Carbon, E	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.051 0.0053 0.011 0.010 0.0	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.032 0.32 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD LOD LOD LOD LOD LOD LOD	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0050 ug/L 0.066 ug/L 0.11 ug/L 0.050 ug/L 0.060 ug/L 0.060 ug/L 0.060 ug/L 0.011 ug/L 0.090 ug/L 0.090 ug/L 0.011 ug/L 0.010 ug/L 0.011 ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.13 0.20 0.18 Result 0.17 0.18 Result 0.18 Result 0.17 0.18 Result 0.17	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.033 0.33 0.33 0.33 0.33 0.33 0.33 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.057 0.062 0.10 0.062 0.10 0.046 MDL 0.057 MDL 0.057 MDL 0.070 MDL 0.070 MDL 0.070	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		esult	Qualifier				***************************************	
PCB-3 1.0 J 200 0.42 pg/L 1 2.1 J 200 0.46 pg/L 1 PCB-4 25 U 200 13 pg/L 1 25 U 200 20 pg/L 1 PCB-5 25 U 200 15 pg/L 1 25 U 200 11 pg/L 1 PCB-6 25 U 200 12 pg/L 1 25 U 200 8.9 pg/L 1	Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte #2 Diesel (C10-C24) General Chemistry Analyte Total Hardness, EPA 200.8 Total Suspended Solids, SM Dissolved Organic Carbon, E Method: 1668C - Polychorir Analyte	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.051 0.0053 0.010 0.0	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041 0.041 0.041 0.020 LOQ 0.32 0.32 0.32 0.32 0.32 LOQ 0.25 LOQ 0.25 LOQ 0.13 LOQ 0.13 LOQ 0.13 LOQ 0.13 LOQ 0.13	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0010 ug/L 0.0018 ug/L 0.0018 ug/L 0.0053 ug/L MDL Unit 0.066 ug/L 0.050 ug/L 0.065 ug/L 0.011 ug/L 0.069 ug/L 0.069 ug/L 0.010 ug/L 0.011 ug/L 0.011 ug/L 0.050 ug/L 0.011 ug/L 0.012 ug/L 0.013 ug/L	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 Result 0.15 0.13 0.20 0.18 Result 0.17 Result 0.18 Result 0.20 0.18 Result 0.20 0.18	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.030 0.33 0.33 0.33 0.33 0.33 LOQ 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.057 0.062 0.11 0.051 MDL 0.046 MDL 0.070 MDL 0.070 MDL 0.10 MDL 0.10 MDL 0.10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1		esult	Qualifier				***************************************	
PCB-4 25 U 20 U 13 pg/L 1 25 U 20 U 20 pg/L 1 PCB-5 25 U 20 U 20 U 1 25 U 20 U 11 pg/L 1 PCB-6 25 U 20 U 12 pg/L 1 25 U 20 U 8.9 pg/L 1	Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDE 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Monobutyltin Tributyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte #2 Diesel (C10-C24) General Chemistry Analyte Total Hardness, EPA 200.8 Total Suspended Solids, SM Dissolved Organic Carbon, E Method: 1668C - Polychorir Analyte PCB-1	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.051 0.0053 0.010 0.0	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041 0.041 0.041 0.041 0.032 0.32 0.32 0.32 0.32 LOQ 0.32 0.32 LOQ 0.32 0.32 LOQ 0.32 0.32	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0010 ug/L 0.0018 ug/L 0.0053 ug/L MDL Unit 0.060 ug/L 0.050 ug/L 0.065 ug/L 0.011 ug/L 0.065 ug/L 0.011 ug/L 0.049 ug/L 0.049 ug/L 0.049 ug/L 0.049 ug/L 0.049 ug/L MDL Unit 0.050 ug/L 0.011 ug/L 0.050 ug/L 0.011 ug/L 0.050 ug/L 0.011 ug/L 0.050 ug/L 0.011 ug/L 0.049 ug/L MDL Unit 0.10 mg/L MDL Unit 0.074 mg/L MDL Unit 0.074 mg/L MDL Unit 0.072 mg/L MDL Unit 0.046 pg/L	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.01 0.0	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.030 0.33 0.33 0.33 0.33 0.33 LOQ 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.057 0.062 0.11 0.051 MDL 0.057 0.062 0.10 0.046 MDL 0.070 MDL 0.070 MDL 0.10 MDL 0.10 MDL 0.57	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1		esult	Qualifier				***************************************	
PCB-6 25 U 200 12 pg/L 1 25 U 200 8.9 pg/L 1	Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Tributyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte #2 Diesel (C10-C24) General Chemistry Analyte Total Hardness, EPA 200.8 Total Suspended Solids, SM Dissolved Organic Carbon, E Method: 1668C - Polychorin Analyte PCB-1 PCB-2 PCB-3	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.0053 0.001 0.010 0.	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.041 0.041 0.041 0.020 LOQ 0.32 0.32 0.32 0.32 LOQ 0.32 0.32 LOQ 0.32 0.32 LOQ 0.32 0.32 C) LOQ 0.25 LOQ 0.25 C) LOQ 0.13	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0053 ug/L MDL Unit 0.060 ug/L 0.065 ug/L 0.011 ug/L 0.065 ug/L 0.011 ug/L 0.012 ug/L	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 0.18 0.15 0.13 0.20 Result 0.15 0.13 0.20 0.18 Result 0.15 0.15 0.13 0.20 0.18 Result 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.030 0.33 0.33 0.33 0.33 LOQ 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0018 0.0054 MDL 0.057 0.062 0.010 0.057 0.010 MDL 0.057 0.062 0.10 0.046 MDL 0.057	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1		esult	Qualifier				***************************************	
	Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Total Analyte Dibutyltin Monobutyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tetra-n-butyltin Tributyltin Monobutyltin Tributyltin Monobutyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte Total Hardness, EPA 200.8 Total Suspended Solids, SM Dissolved Organic Carbon, E Method: 1668C - Polychorin Analyte PCB-1 PCB-2 PCB-3 PCB-4	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.0053 0.001 0.010 0.	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.041 0.041 0.041 0.041 0.032 0.32 0.32 0.32 LOQ 0.32 0.32 LOQ 0.32 0.32 0.32 LOQ 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0047 ug/L 0.0047 ug/L 0.0048 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L 0.0019 ug/L 0.0010 ug/L 0.001	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 Result 0.17 0.14 0.22 0.20 0.18 0.18 0.18 Result 0.15 0.13 0.20 0.18 Result 0.15 0.13 0.20 0.18 Result 0.20 0.18 Result 0.20 0.20 Result 0.20 0.20 Result 0.20 0.20 0.30 0.30 0.30 0.30 0.30 0.30	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.030 0.33 0.33 0.33 0.33 0.33 LOQ 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0054 0.0054 MDL 0.062 0.067 0.11 0.051 MDL 0.046 0.046 MDL 0.040	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1		esult	Qualifier				***************************************	
	Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Endrin Ketone 2,4'-DDD 2,4'-DDT Total DDDs Total DDDs Total DDTs Oxychlordane Method: PSEP/Krone - Tota Analyte Dibutyltin Monobutyltin Tributyltin Method: PSEP/Krone - Diss Analyte Dibutyltin Monobutyltin Tributyltin Method: NWTPH-Gx - Gaso Analyte Gasoline Method: NWTPH-Dx - Diese Analyte #2 Diesel (C10-C24) General Chemistry Analyte Total Hardness, EPA 200.8 Total Suspended Solids, SM Dissolved Organic Carbon, E Method: 1668C - Polychorir Analyte PCB-1 PCB-2 PCB-3 PCB-4 PCB-5 PCB-6	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.0053 0.001 0.010 0.0	U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.041 0.041 0.041 0.032 0.32 0.32 0.32 0.32 0.32 0.32 LOQ 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	0.010 0.010 0.010 0.010 0.010 0.010 0.051 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0013 ug/L 0.0017 ug/L 0.0018 ug/L 0.0018 ug/L 0.0013 ug/L 0.0014 ug/L 0.0017 ug/L 0.0016 ug/L 0.0049 ug/L 0.0047 ug/L 0.0047 ug/L 0.0018 ug/L 0.0018 ug/L 0.0018 ug/L 0.0010 ug/L 0.0018 ug/L 0.0050 ug/L 0.0060 ug/L 0.060 ug/L 0.060 ug/L 0.011 ug/L 0.050 ug/L 0.011 ug/L 0.049 ug/L 0.040 ug/L 0.0	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1		0.01 0.01 0.01 0.01 0.052 0.01 0.01 0.01 0.01 0.01 0.021 0.021 0.021 0.011 0.01 0.0	U U U U U U U U U U U U U U U U U U U	0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.041 0.041 0.041 0.041 0.030 0.30 0.30 0.30 0.30 0.30 0.30 0.	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.021 0.021 0.021 0.010 LOD LOD LOD LOD LOD LOD LOD LO	0.0017 0.0018 0.0013 0.0014 0.0017 0.0016 0.0047 0.0047 0.0018 0.0010 0.0018 0.0054 MDL 0.051 0.062 0.062 0.10 0.062 0.11 0.051 MDL 0.057 0.062 0.10 0.046 MDL 0.057	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac Dil Fac Dil Fac 1 Dil Fac 1		esult	Qualifier				***************************************	

Inch o	I I ar	200	12	L = /1 1	T 1	25	II 300		-/-/- 1
PCB-8 PCB-9	25 49	U 200	14	pg/L 1 pg/L 1		25 51	U 200	9.7 p	g/L 1
PCB-10 PCB-11	49 25			pg/L 1 pg/L 1	ļ	51 35			
PCB-12	39	U 390	15	pg/L 1		40	U 400	11 p	og/L 1
PCB-13 PCB-14	39 25			pg/L 1 pg/L 1		40 25			
PCB-15	20	U 200	16	pg/L 1		20	U 200	11 p	og/L 1
PCB-16 PCB-17	9.8			pg/L 1 pg/L 1		51 4.5		ł	
PCB-18	5.2		1.6	pg/L 1		6.2		2.1 p	og/L 1
PCB-19 PCB-20	9.8 8.7		1.6	pg/L 1 pg/L 1		10 18		3.0 p	
PCB-21	5.0		1.6	pg/L 1		12		2.2 p	g/L 1
PCB-22 PCB-23	3.1 20			pg/L 1 pg/L 1	- 	6.5 20		2.0 p	
PCB-24 PCB-25	20 20			pg/L 1		20 20		2.1 p	
PCB-26	39		1.7	pg/L 1 pg/L 1		40		1.9 p	
PCB-27 PCB-28	20 8.7		1.7	pg/L 1 pg/L 1		20 18		······································	
PCB-29	39		1.7	pg/L 1		40			
PCB-30 PCB-31	5.2 8.2		1.6	pg/L 1 pg/L 1		6.2 19		2.1 p	
PCB-32	9.8		1.5	pg/L 1		10		2.0 p	
PCB-33 PCB-34	5.0 20			pg/L 1 pg/L 1	 	12 20		2.2 p	
PCB-35	9.8		1.7	pg/L 1		10	U 200	2.4 p	og/L 1
PCB-36 PCB-37	9.8			pg/L 1 pg/L 1		10 12			
PCB-38	20	U 200	1.6	pg/L 1		20	U 200	2.2 p	og/L 1
PCB-39 PCB-40	9.8 5.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		pg/L 1 pg/L 1		10 7.1			
PCB-41	9.8	U 200	1.9	pg/L 1		10	U 200	1.4 p	g/L 1
PCB-42 PCB-43	9.8			pg/L 1 pg/L 1		4.4 10		1.1 p	
PCB-44	22	UJ 590	1.3	pg/L 1		17	J 610	0.97 p	og/L 1
PCB-45 PCB-46	20 20	U 200 U 200	2.1	pg/L 1 pg/L 1	+	2.3 20	UJ 200 U 200		og/L 1 og/L 1
PCB-47	22	UJ 590	1.3	pg/L 1		17	UJ 610	0.97 p	og/L 1
PCB-48 PCB-49	7.9			pg/L 1 pg/L 1	+	3.4 6.2		<u> </u>	
PCB-50	39	U 390	1.5	pg/L 1		1.7	J 400	1.1 p	og/L 1
PCB-51 PCB-52	20 32		1.4	pg/L 1 pg/L 1		2.1 13		·	og/L 1
PCB-53	39	U 390	1.5	pg/L 1		1.7	J 400	1.1 p	og/L 1
PCB-54 PCB-55	9.8 9.8		1.1	pg/L 1 pg/L 1		10 10	U 200	0.7 p	og/L 1
PCB-56 PCB-57	4.4 9.8	J 200	1.3	pg/L 1 pg/L 1	<u> </u>	8.5 10	J 200	0.81 p	og/L 1
PCB-58	5.9	J 200	1.2	pg/L 1		20	U 200	0.75 p	og/L 1
PCB-59 PCB-60	59 20		1.2	pg/L 1 pg/L 1		1.6 4.5		0.85 p	og/L 1
PCB-61	27		1.2	pg/L 1		24			
PCB-62 PCB-63	59 20		1.2	pg/L 1 pg/L 1		1.6 20		0.85 p 0.91 p	
PCB-64	5.0	J 200	1.1	pg/L 1	+	7.1	J 200	0.78 p	og/L 1
PCB-65 PCB-66	22 11		1.3	pg/L 1 pg/L 1	+	17 16			
PCB-67	20	U 200	1.1	pg/L 1		20	U 200	0.68	og/L 1
PCB-68 PCB-69	7.9		1.2	pg/L 1 pg/L 1		20 6.2		<u> </u>	
PCB-70	27	J 790	1.2	pg/L 1		24	J 810	0.78 p	og/L 1
PCB-71 PCB-72	5.3			pg/L 1 pg/L 1		7.1 20		L	
PCB-73	20	U 200	1.1	pg/L 1		20	U 200	0.78 p	og/L 1
PCB-74 PCB-75	27 59		1.2	pg/L 1 pg/L 1		24 1.6			
PCB-76	27	J 790	1.2	pg/L 1		24	J 810	0.78 p	og/L 1
PCB-77 PCB-78	5.4 9.8		2.0	pg/L 1 pg/L 1		3.7 10			
PCB-79	9.8	U 200	1.2	pg/L 1		10	U 200	0.78	og/L 1
PCB-80 PCB-81	9.8		1.3	pg/L 1 pg/L 1		10 10			
PCB-82	14		7.1	pg/L 1		10		1.4 p	og/L 1
PCB-83 PCB-84	12 44			pg/L 1 pg/L 1	ļ	20 4.8			
PCB-85 PCB-86	18 110	J 590	5.5	pg/L 1		2.4 14		1.1 p	g/L 1
PCB-87	110		5.3	pg/L 1 pg/L 1		14		1.1 p	og/L 1
PCB-88 PCB-89	9.8		6.9	pg/L 1 pg/L 1		3.0 10			
PCB-90	290	J 590	5.6	pg/L 1		26	J 610	1.1 p	og/L 1
PCB-91 PCB-92	17 42			pg/L 1 pg/L 1		3.0 4.3		·	
PCB-93	20	U 390	6.8	pg/L 1		20	U 400	1.4 p	og/L 1
PCB-94 PCB-95	20 240	U 200 200		pg/L 1 pg/L 1		20 19		·	
PCB-96	20	U 200	0.53	pg/L 1		20	U 200	0.49 p	og/L 1
PCB-97 PCB-98	110 20		5.6	pg/L 1 pg/L 1		14 20		1.1 p	og/L 1
PCB-99 PCB-100	42 20	J 200	5.0	pg/L 1		5.4 20	J 200	2.0 p	og/L 1
PCB-101	290	J 590	5.6	pg/L 1	ļ	26	J 610	1.1 p	og/L 1
PCB-102 PCB-103	20 9.8		5.6	pg/L 1 pg/L 1		20 10		1.1 p	og/L 1
PCB-104	9.8	U 200	0.45	pg/L 1		10	U 200	0.48 p	og/L 1
PCB-105 PCB-106	72 20	20 U 200		pg/L 1 pg/L 1	-	15 20		1.2 p 0.85 p	
PCB-107	6.4	J 390	4.9	pg/L 1		20	U 400	0.99 p	og/L 1
PCB-108 PCB-109	110 14			pg/L 1 pg/L 1		14 2.9		1.1 p	
PCB-110	270	J 390	4.1	pg/L 1		28	J 400	0.83 p	og/L 1
PCB-111 PCB-112	9.8	U 200 U M 200		pg/L 1 pg/L 1		20 10			
PCB-113	290	J 590	5.6	pg/L 1		26	J 610	1.1 p	og/L 1
PCB-114 PCB-115	9.8 270		4.1	pg/L 1 pg/L 1		10 28		0.83 p	og/L 1
PCB-116	18	J 590	5.5	pg/L 1		2.4	J 610	1.1 p	og/L 1
PCB-117 PCB-118	18 220	J 590 20	5.8	pg/L 1 pg/L 1		2.4 30	20	1.1 p	og/L 1
PCB-119	110	J 1200	5.3	pg/L 1		14	J 1200	1.1 p	og/L 1
PCB-120 PCB-121	9.8 9.8	U 200	4.2	pg/L 1 pg/L 1		10 10	U 200	0.86 p	og/L 1
PCB-122 PCB-123	9.8 9.8	U 200	6.2	pg/L 1		10 10	U 200	1.3 p	og/L 1
PCB-123 PCB-124	9.8 6.4		4.9	pg/L 1 pg/L 1		20	U 400	0.99 p	g/L 1
PCB-125	110 9.8	J 1200	5.3	pg/L 1	+	14 1.4	J 1200	1.1 p	og/L 1
PCB-126 PCB-127	20	U 200	5.3	pg/L 1	+	20	U 200	1.1 p	og/L 1
PCB-128 PCB-129	240 2800	J 390	7.4	pg/L 1 pg/L 1	+	22 220	J 400	1.0 p	og/L 1
PCB-130	97	J 200	11	pg/L 1		9.3	J 200	1.5 p	og/L 1
PCB-131 PCB-132	20 510	U 200 200		pg/L 1 pg/L 1		20 37		1.4 p	og/L 1
PCB-133	14	J 200	8.3	pg/L 1		10	U 200	1.2 p	og/L 1
PCB-134 PCB-135	48 590			pg/L 1 pg/L 1		40 44		1.3 p	og/L 1
PCB-136	150			pg/L 1 pg/L 1		10		<u> </u>	

		r r	T	,			r			
PCB-137	48			pg/L	1		2.6			B pg/L
PCB-138	2800	590		pg/L	1		220			l pg/L
PCB-139	20			pg/L	1		20			L pg/L
PCB-140	20			pg/L	1		20			L pg/L
PCB-141	600			pg/L	1		49			2 pg/L
PCB-142	9.8			pg/L	1		10			2 pg/L
PCB-143	48			pg/L	1		40			B pg/L
PCB-144	84			pg/L	1		6.4			2 pg/L
PCB-145	9.8			pg/L	1		10			2 pg/L
PCB-146	270	200		pg/L	1		27			L pg/L
PCB-147	1400	390		pg/L	1		110			L pg/L
PCB-148	9.8			pg/L	1		10			2 pg/L
PCB-149	1400	390		pg/L	1		110			L pg/L
PCB-150	20			pg/L	1		20			B pg/L
PCB-151	590	390		pg/L	1		44			2 pg/L
PCB-152	9.8			pg/L	1		10			B pg/L
PCB-153	2200	390		pg/L	1		190			pg/L
PCB-154	9.8			pg/L	1		10			L pg/L
PCB-155	9.8			pg/L	1		10			7 pg/L
PCB-156	210			pg/L	1	***************************************	24		<u> </u>	L pg/L
PCB-157	210			pg/L	1		24			L pg/L
PCB-158	250	ļ		pg/L	1		20			L pg/L
PCB-159	73			pg/L	1		5.4			B pg/L
PCB-160	20			pg/L	1		20			L pg/L
PCB-161	9.8			pg/L	1		10			2 pg/L
PCB-162	8.7			pg/L	1		0.89			pg/L
PCB-163 PCB-164	2800	590		pg/L	1	····	220		4	L pg/L
	170	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		pg/L	1	~~~~~~~~~~~	14	***************************************		pg/L
PCB-165	9.8			pg/L	1	~~~~~	10			pg/L
PCB-166	240			pg/L	1	~~~~~~	22			pg/L
PCB-167	110			pg/L	1	~~~~~~~~	11			pg/L
PCB-168	2200	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		pg/L	1	~~~~~~~~~~~	190	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		pg/L
PCB-169	9.8			pg/L	1	~~~~~	2.5			7 pg/L
PCB-170	2100	200		pg/L	1		220	200	 	pg/L
PCB-171	450	390		pg/L	1		42		<u></u>	
PCB-172	300	200		pg/L	1		30			2 pg/L
PCB-173	450	390		pg/L	1		42		<u></u>	pg/L
PCB-174	1700	200		pg/L	1		150			9 pg/L
PCB-175 PCB-176	68 150				1 1		6.5 11			7 pg/L L pg/L
PCB-177	870			pg/L pg/L	1		83			
PCB-177	300				1		30			pg/L pg/L
PCB-178	360				1		32			l pg/L
PCB-180	4500			pg/L	1		410			B pg/L
PCB-181	9.8			pg/L	1		10			B pg/L
PCB-182	9.8				2		10		I	
PCB-183	930			pg/L	1		74			pg/L
PCB-184	20				1		20			7 pg/L
PCB-185	170			pg/L pg/L	1		22			pg/L
PCB-186	9.8				1		10			L pg/L
PCB-187	1900				1		170			pg/L
PCB-188	9.8				1		10			7 pg/L
PCB-189	81				1		10			7 pg/L
PCB-190	440			pg/L	1		49			7 pg/L
PCB-191	80			pg/L	1		7.3			7 pg/L
PCB-192	20			pg/L	1		20			pg/L
PCB-193	4500			pg/L	1		410			B pg/L
PCB-194	1300				1		150		J	B pg/L
PCB-195	500			pg/L	1		55			pg/L
PCB-196	620			pg/L	2		65			
PCB-197	31			pg/L	1		3.9			pg/L
PCB-198	1100	390		pg/L	1		120			pg/L
PCB-199	1100	390		pg/L	1		120	J 400		pg/L
PCB-200	130			pg/L	1		13			B pg/L
PCB-201	110	J 200		pg/L	1		12			pg/L
PCB-202	150			pg/L	1		15			pg/L
PCB-203	640		2.4	pg/L	1		68			pg/L
PCB-204	20			pg/L	1		20			pg/L
PCB-205	79	<u> </u>		pg/L	1		9.5	J 200		pg/L
PCB-206	290			pg/L	1		42			l pg/L
PCB-207	36			pg/L	1		5.5			pg/L
PCB-208	48			pg/L	1		8.4			B pg/L
PCB-209	13				1		6.2			pg/L
					A		•			